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ABSTRACT

Vortex aerodynamics has played an important role in the de-

velopment of high performance aircraft in recent years. Although

computer codes which solve the three dimensional Euler equations

have been used extensively to study leading-edge vortices, they

don't include physical viscosity effects associated with vortex

flows. The Euler solvers do, however, contain numerical viscosi-

ty. As a result, viscosity effects in the Euler solutions such

as vortex core size, vortex burst location, leading edge separa-

tion, and vortex rollup often do not agree quantitatively with

results of physical(experiments. The present work defines models

for these physical' viscosity effects which can be coupled with an

Euler solver to improve modeling of vortex physics.

A vortex core model is derived from the steady, incompress-

ible Navier-Stokes equations written in cylindrical coordinates.

The core model is coupled with an Euler solver and tested on a

variety of delta wings over a range of angles of attack. The

resulting surface pressure distributions and vortex burst loca-
tions are shown to be much closer to wind tunnel data and results

from Navier-Stokes solutions than results from Euler codes alone.

A second model is defined for viscosity effects in the vis-

cous shear layer near the rounded leading edge of a highly swept.

wing based on an analogy to the boundary layer on a flat plate.

The model is incorporated into an Euler code through the surface.

boundary condition and source terms in the boundary cells. The
modified code is tested on several highly swept wings with round-'

ed leading edges. Results are also shown to be in closer agree-

ment with wind tunnel data for the same wing geometry than re-

sults from an unmodified Euler code.
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ABSTRACT

Vortex aerodynamics has played an important role in the development of

high performance aircraft in recent years. Although computer codes which

solve the three dimensional Euler equations have been used extensively to

study vortex flows, they don't include physical viscosity effects

associated with vortex flows. The Euler solvers do, however, contain

numerical viscosity. As a result, viscosity effects in the Euler solutions

such as vortex core size, vortex burst location, leading edge separation,

and vortex rollup often do not agree quantitatively with results of

physical experiments. The present work defines models for these physical

viscosity effects which can be coupled with an Euler solver to improve

modeling of vortex physics.

A vortex core model is derived from the steady, incompressible

Navier-Stokes equations written in cylindrical coordinates. The core

model is coupled with an Euler solver and tested on a variety of delta

wings over a range of angles of attack. The resulting surface pressure

distributions and vortex burst locations are shown to be much closer to

wind tunnel data and results from Navier-Stokes solutions than results from

Euler codes alone.

A second model is defined for viscosity effects in the viscous shear

layer near the rounded leading edge of a highly swept wing based on an

analogy to the boundary layer on a flat plate. The model is incorporated

into an Euler code through the surface boundary condition and source terms

in the boundary cells. The modified code is tested on several highly swept

wings with rounded leading edges. Results are also shown to be in closer

agreement with wind tunnel data for the same wing geometry than results

from an unmodified Euler code.
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p pressure
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t time

U,V,W velocities in the X, Y, and Z coordinate directions

U. free stream velocity
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u,v,w velocities in the x, r and 0 coordinate directions

flow quantities in Euler equations

XYZ chordwise, vertical and spanwise Cartesian coordinates

x,r,O axial, radial, and circumferential cylindrical coordinates

a wing angle of attack

F vortex strength

Y ratio of specific heats

6, 6, core radius and shear layer thickness

E ratio of core diameter to vortex length

O z vortex axis inclination angles

/air viscosity

P air density

Subscripts

a based on area difference

i due to image vorticies

E in the Euler solution

f skin friction

g core growth

s shear layer

t thickness

Y angles and distances measured parallel to the Y axis

Z angles and distances measured parallel to the Z axis

0 central axis of the vortex

6 vortex core edge

40 free stream
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n time level or iteration count

(0),(1),(2) stages in Runge-Kutta scheme
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION OF THE PRESENT WORK

Vortex aerodynamics has played an increasingly important role in the

design of high performance aircraft in recent years. In the late 1940's,

wind tunnel studies of wings with triangular or delta planforms revealed

that such wings produced more lift at high angles of attack than was

predicted by conventional finite wing theory. The first of these studies,

which was reported by Wilson and Lovell [1], found that the magnitude of

this extra lift was increased when the test wing was given a sharp leading

edge. Flow visualization in wind tunnels and water channels revealed that

as a delta wing approaches an angle of attack where flow separation would

cause an unswept wing to stall, the flow over each highly swept leading

edge instead rolls up into a tornado-like flow structure called a leading

edge vortex. The use of a sharp leading edge causes the flow to separate

and form a vortex at a lower angle of attack. Since the separated flow
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rolls up instead of being disorganized into turbulence, the loss of lift

normally associated with a stall is delayed until higher angles of attack.

Like a tornado, leading edge vortices have very low pressures in their

center or core region. Because of this, they lower the pressure on a

portion of the upper surface of the wing and hence increase the amount of

lift produced. The extra vortex lift gives delta-winged aircraft like the

F-102 and F-106 extremely good maneuverability at low speeds.

The benefits of leading edge vortices have prompted designers to

include vortex lift-generating surfaces in such modern high performance

aircraft as the F-16, F-18, SR-71, Concorde SST, and even the Space

Shuttle. Figure 1 shows planform views of these aircraft with the

leading-edge vortex-generating surfaces identified by crosshatching. Such

aircraft are able to fly at angles of attack greater than 30 degrees in

some cases without experiencing a stall. Aircraft with better high speed

performance can be designed by relying on vortex lift for their low speed,

high angle of attack operations. However, care must be taken when

designing such aircraft to avoid problems which can result from the

presence of vortices in the flow field.

As more experimental data on leading edge vortices were accumulated,

researchers such as Hummel [2] and Anders [3] found that when a delta wing

operates at very high angles of attack, axial pressure gradients develop in

the cores of its leading edge vortices. As angle of attack is increased,

these pressure gradients eventually cause local stagnation or reversal of

the flow in the core. When this happens, it causes the core to grow

rapidly and break down into random turbulence in much the same way that

stall occurs on unswept wings. This phenomenon is called vortex bursting.

Several researchers including Wentz [4], Payne and Nelson [5], Hall [6],

and Lawford and Beauchamp [7] have made extensive wind tunnel and water

channel tests of a variety of delta wings. They have created a large body

of bursting location data as a function of sweep angle and angle of attack.
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F-18 F-l06 F-16

SR-71 Space Shuttle SST

Figure 1. Planform views of some high performance aircraft. Surfaces which

generate leading edge vortices are crosshatched.

3



When bursting occurs, lift is greatly reduced. If the vortex on one

wing of an aircraft bursts before that on the other wing, the aircraft

experiences severe control problems. Because bursting progresses from the

wing trailing edge toward the apex, it can also cause an uncontrollable

pitchup on some delta wings. In addition, the turbulence present in a

burst vortex can cause structural fatigue problems in aircraft components

which are not designed for that frequency of cyclic loading. Skow,

Titriga, and Moore [8], among others, have described aircraft

configurations which even experience control difficulties due to the motion

and interaction of the vortices they produce before any bursting occurs.

Present technologies for understanding vortices and utilizing them in

aircraft design have some serious limitations. Wind tunnels and water

channels are currently used for the majority of vortex-related design

development work, but such testing is expensive and requires long lead

times, making it poorly suited to preliminary, iterative design work. Wind

tunnels also provide only limited access to local flow details.

Computational fluid dynamics (CFD) technologies have shown consider-

able ability to model vortex effects. Changes to the flow conditions and

vehicle configurations being modeled are accomplished in CFD codes with

less effort than is required for changes in wind tunnel models and test

conditions. This makes CFD very attractive for preliminary design and

configuration definition work.

Several mathematical models and numerical methods have been developed

to simulate leading edge vortices. As available computing power has

increased, solution technology has progressed from the leading edge suction

analogy of Polhamus [9] to panel methods, [10,11] then to Euler equation

formulations. [12,13,14,15) With each new method, the requirement for

computer speed and memory has increased. In recent years, attempts have

been made to solve the Navier-Stokes equations for flowfields around delta
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wings. [16,17,18] This technology, however, is not yet mature. Numerical

problems associated with grid density and truncation error where high

gradients are present have yet to be resolved. In addition, current

Navier-Stokes codes employ turbulence models which are inadequate for

vortex flows. Computing time and memory requirements of Navier-Stokes

codes also make them too expensive for routine uses.

On the other hand, computer codes which solve the Euler equations

offer a low-cost alternative to the Navier-Stokes solvers for problems

where viscosity effects are either negligible or can be represented by

simple mathematical models. Many researchers, including Rizzi [19] and

Newsome [20], have made extensive use of Euler solvers to simulate leading

edge vortex flows. Their results are often in good qualitative agreement

with experimental and Navier-Stokes results, but they frequently fail to

accurately predict such viscosity effects as vortex core size and bursting

location. Analytic models for physical viscosity effects can be coupled

with the Euler codes. The formulation of such a method would contribute to

a better understanding of the processes which occur in a leading edge

vortex. The combination of Euler code and model would be a useful tool for

vortex research and aircraft design. This is the motivation for the

present research.

1.2 DESCRIPTION OF THE PROBLEM

Computer codes which solve the Euler equations do not attempt to

include physical viscosity effects. Ideally, an Euler solution should be

totally inviscid. In practice, however, numerical effects which are

similar to physical viscosity are present in Euler solutions. This

numerical viscosity will be described in greater detail in Chapter 2.

Because of numerical viscosity, Euler solutions contain such viscous

5



phenomena as flow separation, leading edge vortices, and vortex breakdown.

These effects are not, however, controlled by the viscous physics of the

flow being modeled. For flow problems where viscosity effects are

relatively unimportant, the difference between numerical and physical

viscosity has a relatively small effect on the flow solutions. For these

cases, Euler solvers often give acceptable results.

In flow problems involving leading edge vortices, however, viscosity

effects can have a profound influence on the very structure of the flow

solution. In particular, the leading edge separation which leads to vortex

rollup and the onset of vortex bursting are both strongly affected by

viscosity. In general, numerical viscosity effects are in the same

direction as physical viscosity, so there is often qualitative agreement

between Euler solutions and physical experiments. The magnitudes of

physical and numerical viscosity frequently differ, however. While

physical viscosity is solely a function of flow quantities, numerical

viscosity is also influenced by the computational algorithm used and the

size, shape and orientation of the grid. As a result, quantitative

agreement between computations and physics is often difficult to achieve.

A need therefore exists for a method to replace or correct the effects

of numerical viscosity in Euler solutions so that they better represent the

viscous physics. In the present effort, viscosity effects are measured by

flow quantities in the Euler solution such as pressure, velocity, vortex

strength and core diameter. Corrections to the flow quantities are then

calculated from algebraic models for the viscous processes near the wing

surface and in the vortex core. These corrections are incorporated into

the Euler code as source terms in the flow equations. For this method to

succeed, the algebraic models must properly represent the relevant viscous

physics.
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1.3 EXISTING VORTEX MODELS

A great deal of theoretical modeling of vortex decay and vortex

bursting has been done by a variety of researchers in the past 50 years.

Research on this topic has typically been divided into two areas of

interest. The oldest studies of vortex decay dealt with aircraft trailing

vortices. When vortex bursting on delta wings was discovered in the late

40's, a great deal of attention was given to trying to understand this

phenomenon. In the late 60's and early 70's, when jumbo jets were

introduced into commercial airline service, their trailing vortices created

serious hazards to other aircraft. Attention once more turned to the

modeling of trailing vortex decay. Models for vortex bursting were studied

in search of a means to alleviate the hazard of trailing vortices by

causing them to burst. Then, in the late 70's and 80's the design of high

performance aircraft such as the F-16, F-18, and Space Shuttle focused

interest once more on leading edge vortex bursting.

All of the models and theories developed in this area have

implications for the present research. Each model has certain advantages

and disadvantages for describing vortex bursting. A survey of all the

models reveals at the same time a great variety in their formulation and

yet a general similarity in their fundamental assumptions, especially the

shapes of their assumed velocity distributions.

One of the earliest and simplest 3-dimensional vortex models was the

potential vortex. Circumferential velocity in this vortex varies with the

inverse of the distance from the center. This causes circulation around

all closed paths containing the vortex center to be the same. The

potential vortex model has no viscous core, so circumferential velocity

becomes infinite at the center. Far from the center, however, the velocity

field matches well with those of vortices in nature. Most subsequent

vortex models have been designed to match the potential vortex velocity
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field outside their core regions. Axial velocities for the potential

vortex are defined as being uniform.

A simple modification of the potential vortex avoids the singularity

at the center. Known as the Rankine vortex, this model has a central core

which rotates as a solid body. At the core edge, the circumferential

velocity profile abruptly changes to that of the potential vortex.

Circumferential velocities match at the core edge, but slopes do not. The

great advantage of the Rankine vortex for modeling is the simplicity of

this circumferential profile. For this reason, it has been a popular

velocity profile for the development of bursting theories and simulations.

Like the potential vortex, axial velocities for the Rankine vortex are

uniform.

A more physically reasonable vortex model was derived by Lamb [23] as

a similarity solution for the viscous decay of an infinite line vortex

which is initially concentrated into a potential vortex. The circumferen-

tial velocities in this model are expressed as a function of time. For

this reason, the Lamb vortex was used by Iversen [241 to model trailing

vortex decay. In Iversen's model, a variable turbulent eddy viscosity is

used instead of Lamb's constant viscosity. This allows Iversen to match

water channel trailing vortex decay data more accurately. Both models do

not consider axial variations in vortex properties. This prevents them

from modeling vortex bursting in their present form.

The analytic modeling of vortex bursting really started with Hall's

[25] work published in 1961. He assumed that once viscosity effects had

determined the circumferential velocity profile of the vortex, the bursting

process could by modeled inviscidly. Hall also assumed a conical,

incompressible vortex with steady, laminar flow. The initial velocity

profiles assumed by Hall allowed variation in the axial velocities, but

both his axial and circumferential profiles had singularities at the vortex

center. This forced him to define a diffusive sub-core to avoid the

8



singularity and then patch the two solutions. As a result, Hall's model

was relatively complex.

Other researchers such as Brown, [26] Mager, [27] Krause [28] and

Powell and Murman [29] have derived similar sets of differential equations

to describe bursting. Each used slightly different assumptions and

methods, but all used some arbitrarily defined initial velocity

distribution. The various velocity profiles employed are described and

compared in Appendix A. Each researcher solved the set of equations

numerically and/or analytically. Mager obtained a closed form solution for

his ordinary differential equations for the case of an isolated vortex in a

uniform flow. Because the flow field around a delta wing is far from

uniform, Mager's closed form solution is not used in the present work.

Both Krause [30] and Grabowski and Berger [31] used the algebraic velocity

profiles defined by Mager to make numerical simulations of vortex bursting.

The results of these simulations agree well with bursting experiments

performed in vortex tubes by Harvey [32], Sarpkaya [33], and Faler and

Leibovich [34].

A great deal of theoretical and experimental work has been done aimed

at explaining vortex bursting in terms of stability. The first of these

was Jones [34], who analyzed the response of an arbitrary cylindrical flow

to infinitesimal axial disturbances. Jones then applied his results to

Hall's solution. Subsequent analyses by Benjamin 135), Lessen [36],

Leibovich [37] and others have described vortex breakdown as a transition

or jump between two flow states, one of which has reverse axial flow, such

that both flow states satisfy the governing differential equations. They

defined stability bounds which suggest that some vortices with "super-

critical" initial axial and circumferential velocity distributions are

prone to bursting while vortices with "subcritical" initial profiles are

not. The numerical simulations by Grabowski and Berger tended to disagree

with these stability bounds, however. Mager discovered similar conjugate
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flow states in his closed form solutions. He found that the change from

one flow state to another could either be a smooth transition or an abrupt

jump, depending on the nature of the initial velocity profile.

All of these methods have used arbitrary initial velocity profiles as

part of their analyses. These velocity profiles have generally been

axisymmetric. The flow external to the vortex core has been modeled as

either a uniform velocity field with a line vortex added to it, or as a

conical flow. For these reasons, strict applicability of any of the

solutions or criteria to a general leading edge vortex problem is limited.

Some of the basic methods used to obtain these solutions are, however, used

in the present work.

1.4 OUTLINE OF THE PRESENT WORK

A model for viscosity effects in vortex cores is derived from the

steady, incompressible Navier-Stokes equations written in cylindrical

coordinates. The model is formulated to allow it to be incorporated into a

computer code which solves the Euler equations in three dimensions. The

resulting Euler code/core model combination is tested on a variety of

problems. The first tests are made on a simple rectangular box domain.

These tests determine the ability of the core model to correct for the

effects of numerical viscosity in the Euler solution. Further tests are

made on the rectangular grid to determine the model's ability to produce

vortex bursting when a rapidly growing physical core is modeled and to

prevent bursting if a physical core with zero growth is assumed. The Euler

code with core model is then tested on a variety of delta wings over a

range of angles of attack. The resulting surface pressure distributions

and vortex burst location predictions are compared with wind tunnel data

and results from Navier-Stokes simulations and Euler codes alone.
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A model for total pressure losses due to viscosity in the shear layer

near the rounded leading edge of a highly swept wing is defined based on an

analogy to the boundary layer on a flat plate. The model is incorporated

into an Euler code through the surface boundary condition and momentum

source terms in the boundary cells. The modified code is tested over a

range of angles of attack for several highly swept wings with rounded

leading edges. These flow solutions are compared with wind tunnel data and

results from an unmodified Euler code.
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CHAPTER 2

COMPUTATIONAL METHODS

2.1 EULER EQUATIONS

The Navier-Stokes equations are generally used to describe the

unsteady motion of a compressible viscous fluid. For many flow problems,

however, viscosity effects are confined to relatively small portions of the

flowfield. For instance, for low speed flow around an infinite wing,

viscosity effects may be confined to a thin boundary layer close to the

wing surface. If this region is modeled appropriately, the rest of the

flowfield may be solved with a simplified version of the Navier-Stokes

equations in which the viscosity terms are omitted. These simplified

equations are known as the Euler equations. The use of the Euler equations

bypasses the computational difficulties of dealing with the very small

length scales associated with viscosity effects.

A number of computer codes are available to solve the Euler equations

for flowfields around three-dimensional aerodynamic shapes. Two of these

12



codes, FL057 [13) and ARC3D [15], are modified and used in the present

research. The computational methods employed in each of these codes will

be described because the present research is directed at overcoming some of

the limitations inherent in those methods.

The time dependent, compressible Euler equations can be written in

matrix form:

a a af a q a(1
dt aX dY dZ

where:

p PU p U pWpU PU2+P1 1/ [ 2
pU 7 pUV p pWV (2)

p pUW Pv j pWv +p

_pE PUH pVH L pWH

and U, V, and W are component velocities in the three orthogonal coordinate

directions, X, Y, and Z of a Cartesian coordinate system. Also, p is the

local air density, p is the local air pressure, and E and H are given by:

E-( I )p ++W 2H-E+ (3)
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2.2 FL057 - EXPLICIT FINITE VOLUME FORMULATION

In FL057 [13], the time dependent Euler equations are solved to obtain

steady-state solutions as time asymptotes. The discretization scheme used

by FL057 is known as the finite volume method. In this method, the flow

field is divided into small cells or control volumes. The Euler equations

are satisfied in the average sense for each control volume. This is

essentially solving the integral form of (1) which is

I -+ +g+ dXdYdZ=O. (4)f j at ax ay az)()

and which, for small cells, can be rewritten:

~(5)
at

where h is the cell volume and Q is the operator for the steady-state

residual calculation applied to the flow quantities. In other words, the

rate of change of the flow quantities in each cell is equated to the net

fluxes of those quantities across the cell walls. For the finite volume

method, all of the flow quantities are defined at the center of the cells,

rather than at the grid nodes at the cell corners. When evaluating fluxes,

however, flow quantities on each face of the cell must be known. These

quantities are approximated by making their values at the cell face equal

to the average of quantities at the centers of the cells which share that

face. Derivatives of flow quantities are approximated as differences

between the quantities in adjacent cells.

In order to stabilize the solution, numerical viscosity is added to

the formulation. In FL057, the numerical viscosity is scaled by the
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magnitudes of blended second and fourth derivatives of the flow quantities.

With this damping added, the final form of (5) which is actually solved

becomes:

-(Ch)+QCD -D& =O (6)
a3t

where Di represents the sum of the numerical viscosity added for stability

plus a viscosity-like numerical effect which results from the

discretization of the flowfield and approximation of derivatives with

finite differences. For simplicity in future discussions, the term

"numerical viscosity" will be used in this work to refer to this sum of

both effects.

The flow field is initialized with a uniform velocity distribution,

the initial condition, and then a fourth order Runge-Kutta time-stepping

scheme is used to advance to a steady state solution. The Runge-Kutta

scheme uses a multi-level explicit integration scheme for computational

efficiency. If equation (5) is rewritten

0 _+P& - 0
at

where

P& = (Q -D C),

h
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then, at time level n, the four stage scheme can be written

o(0) Z n

( = (0)_ _t p &(0)

2

w ~ U - -PZ'

2

w (2

w n - w J --zrW(0)+ p C

A single iteration involves sweeping through the entire flowfield and

updating each flow quantity. The Runge-Kutta scheme does not require any

matrix inversion for integration, but it allows larger time steps than

other explicit Euler codes. Like other explicit schemes, the method also

vectorizes easily on supercomputers.

2.3 ARC3D - IMPLICIT FINITE DIFFERENCE FORMULATION

Although it solves the same Euler equations as FLO57, the details of

the formulation of ARC3D are different. The major features which

distinguish ARC3D from FL057 are a finite difference formulation instead of

finite volume and an implicit time-stepping scheme. ARC3D also has the

capability of solving the thin-layer approximation to the Navier-Stokes

equations by including appropriate viscous terms.

The finite difference formulation of ARC3D differs from finite volume

in that flow quantities are defined at the grid node points instead of at

the cell centers. Like FL057, ARC3D uses a centered differencing scheme to

obtain spacial derivatives. Since flow quantities are not weighted by cell
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areas as in FL057, the flow equations are transformed from Cartesian

coordinates into general curvilinear coordinates. The transformation

metrics are generated numerically using finite differences.

The implicit time-stepping scheme of ARC3D is based on a method

developed by Beam and Warming [22]. In this method, the equation to be

solved is

3t

which may be written

wn I_&+Atp tp V 0.

If a correction is defined such that

then the equation to be solved can then be written

6tZ+AtP6& = (I+AtP)6t = -AtP&n

where P is a linearized operator of P. This equation can be written as

implicit and explicit portions to yield

N6M = -AtPiZ (6)

where N is a correction operator defined in three dimensions such that
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N = I+AtT.

The left half of equation (6) is implicit while the right-hand side is the

explicit evaluation of the residual at time step n. The operator N is

approximately factored into three one-dimensional operators, each of which

can be inverted using a block tridiagonal matrix solver. This requires

much less computational effort than inverting N, but computational effort

per iteration is still much greater than in explicit schemes like FL057.

This extra work per iteration is generally offset by much larger time steps

permitted by the implicit scheme. For problems considered in the present

work, however, ARC3D typically took more computer time than FL057 to reach

the same level of convergence in the flow solution.

As in FLO7, numerical viscosity is added based on second and fourth

derivatives of flow quantities. The second order dissipation is added

implicitly to the left side of equation (6) to improve the practical

stability bound. The fourth order term is added explicitly to the

formulation.

The thin-layer approximations to the Navier-Stokes equations involve

neglecting viscosity terms based on derivatives in the streamwise

direction. As a result, they are not really valid for the case of a vortex

core. Likewise, separated flow invalidates the thin-layer assumptions.

For these reasons, the Navier-Stokes capabilities of AR3D are not used to

any great extent in the present effort.

2.4 BOUNDARY CONDITIONS

Appropriate boundary conditions must be specified to make a

formulation complete. Three different types of boundary conditions are
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implemented in the present work, farfield, solid wall and symmetry. At far

field boundaries, just setting the flow quantities to free stream values is

not normally acceptable. If such an approach is taken, the fixed

quantities at the boundaries cause wave reflections at the boundary which

propagate back into the flowfield. This can lead to errors and instability

in the solution.

Instead of fixed free stream conditions at farfield boundaries, a

characteristic boundary condition is used which is based on the theory of

Kreiss [21]. If the flow is subsonic, this theory indicates that for

boundaries which have incoming flow through them, all but one of the five

needed flow quantities must be specified by the external flow. The one

remaining quantity, usually pressure, is extrapolated from the interior so

that sound waves can be allowed to escape. For farfield boundaries with

outflow, on the other hand, only one quantity is specified by the exterior

flow and the rest are extrapolated from the interior.

At solid surfaces, flow tangency is enforced for inviscid flow

problems. This is done by setting the normal component of the flow

velocity at the surface to zero. The pressure at the surface must also be

known because it provides a momentum source to the boundary cells or nodes.

The simplest approximation to the surface pressure is to equate it to the

pressure at the boundary cell center or the adjacent node. A higher order

estimate of surface pressure can be achieved by using the momentum equation

normal to the surface to extrapolate pressure from the cell center or node

down to the solid wall.

For planes of symmetry, a mirror image condition for all the flow

quantities is enforced. As with inviscid solid surfaces, pressure at the

plane of symmetry may be extrapolated from the interior using the momentum

equation normal to the symmetry plane. This pressure may also be simply

equated to the pressure at the adjacent boundary cell center or grid node.
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2.5 GRIDS

Three types of grid topology are used in the present research. The

first of these is a simple Cartesian grid in a rectangular box domain. A

perspective view of one such grid is shown in Figure 2. The topology of

such a grid is labeled H-H because boundaries at opposite ends of the box

are parallel to each other like the two vertical legs of the letter H.

In discussing grid topology, it is helpful to refer to the i, j, k

indices of a grid point instead of its physical coordinates, X, Y and Z.

For Cartesian grids with unit spacing between nodes, there is no

distinction between the two methods. However, as a grid is distorted to

conform to more complex geometries, the X, Y, and Z coordinates of a given

node may change, but the computational coordinates given by its i, j and k

indices do not. The convention used in this work is that X and i

directions run generally in the streamwise direction, Y and j run

vertically, and Z and k run laterally in a direction that makes the XYZ

coordinate system right handed. In FL057, cells are indexed in the same

way as grid nodes, except that ghost cells are added along the boundaries

of the computational domain. As a result, the dimensions of the arrays

storing flow quantities are larger by one in each direction than those for

the grid.

Figure 3 shows a typical boundary cell on the lower surface of the

rectangular box. Only i and j indices are shown for simplicity. Note that

the j index of the cell is 2 because the ghost cell j index is 1. The grid

nodes at the surface have a j index of 1 however. Similar relationships at

the upstream and downstream boundaries cause a cell with a given i index to

be between grid nodes with indices of i-l and i. The H-H grid used in this

work has an inviscid solid surface boundary condition on the j-1 face of

the domain and a symmetry boundary condition on the k-l face. Farfield

boundary conditions are used on the other four faces.
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Figure 2. Perspective view of rectangular box grid.

node node(i -1, 2) (1, 2)

cell (1,2)

node node
(i-ll surface (i,)

ghost cell
(i,l)

Figure 3. Boundary cell and grid indices.
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A second grid is used for studies of leading edge vortices on delta

wings. In this grid, the i-l and i-imax faces remain at the upstream and

downstream ends of the flowfield, parallel to each other as in the H-H

grid. However, the lower surface of the grid is wrapped around the upper

and lower surfaces of the delta wing, causing the two lateral side faces of

the grid at k-l and k-kmax to end up both being on the plane of symmetry,

one on the top side of the wing and one on the bottom. In the region of

the grid ahead of the apex of the delta wing, the j-1 surface of the grid

is condensed into a single line. A perspective view of this grid and a

planform view of a delta wing with the pattern of the grid on its surface

are shown in Figure 4.

When the grid on the other side of the plane of symmetry is included,

the j - constant grid lines on i - constant planes are circles or ellipses.

For this reason, the topology of this grid is labeled H-O. The H implies

that i - constant planes are still parallel as in the Cartesian grid while

the 0 suggests the circular shape of the j - constant grid lines.

Boundary conditions for this grid differ from those of the H-H

topology. In the H-0 system, both k-i and k-kmax faces require symmetry

conditions. The j-1 surface has two types of boundary conditions. For i

indices running from the apex of the delta wing to its trailing edge, a

solid surface boundary condition is used. Upstream and downstream of the

wing, a periodic boundary condition is used which recognizes the fact that

a cell touching the j-1 surface of the top half of the grid is physically

adjacent to another boundary cell with a higher k index on the lower half

of the grid. Figure 5 shows a view of an i - constant plane of the grid

downstream of the wing to make this relationship between the boundary cells

more clear. The periodic condition can be handled easily by setting flow

quantities in the upper cell of the periodic boundary equal to the flow

quantities in the corresponding lower cell and vice versa for FL057, and by
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Figure 5. View from downstream of i - 45 plane of H-O grid.
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making an appropriate arrangement between the upper and lower grid nodes

for AR3D. Farfield boundary conditions are used for the rest of the

boundaries.

The third grid topology used is labeled C-H. As the name implies, the

streamwise direction of the grid is folded into a C shape while the

spanwise direction remains similar to the rectangular box. Figure 6 shows

a view of the k-l plane along with a wing planform view and grid pattern

for a C-H grid used in the present work. The C shape of the k-l plane is

apparent. It is also apparent from Figure 6 that, as in the H-O mesh, two

different boundary conditions are needed for the j-1 surface.

The i index in this topology starts at the lower half of the down-

stream end of the grid, increases moving forward and wrapping around the

wing leading edge, and ends at the upper half of the downstream end. For

those cells which lie on the wing surface, a solid surface boundary

condition is used. A periodic boundary condition is used for the remaining

cells on this boundary. This includes all cells on this surface for k

greater than the k value of the wingtip, and for k less than k of the

wingtip, all cells downstream of the wing trailing edge. Another boundary

condition in the C-H topology which differs from those in either H-H or H-0

meshes is the i-l boundary. Since the i-l surface is downstream of the

wing in a C-H mesh, it is given an outflow farfield boundary condition.

2.6 SPECIAL CONCERNS FOR VORTEX FLOWS

When a vortex is present in an Euler solution, numerical viscosity and

grid density work together to determine vortex core size. Rizzi(19) made

Euler simulations of leading edge vortex flows on delta wings using a range
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of grid sizes from coarse to very fine. He found that for a medium density

grid, surface pressure distributions on the wing surface matched well with

wind tunnel experiments. For grids which were coarser than this, however,

he found that the expansion peaks in the surface pressure curves were more

spread out and the absolute value of their minimum pressure coefficients

were reduced. This result suggests that the vortex core in the coarse grid

Euler solution was larger than the core in the medium grid solution and the

wind tunnel tests. When Rizzi ran simulations on the very fine grid, the

absolute value of the minimum pressure coefficient on the wing was much

greater than for the wind tunnel tests, and the region of the wing effected

by the vortex was smaller. This result implied that the very fine grid

allowed a vortex which was smaller than in the physical experiment.

This dependence on grid density for sizing of the vortex core is a

very undesirable feature of vortex flowfield analyses using Euler solvers

as well as Navier-Stokes codes. Not only does core size effect the

pressure distribution on the wing surface, but if the cell size changes

along the length of the vortex, the resulting change in core size can

produce an axial pressure gradient. This, in turn, can contribute to the

development of an axial jet or velocity defect, depending on the direction

of the gradient. Because these effects are numerical rather than based on

the physics of the problem, the usefulness of Euler solvers for vortex

research is jeopardized.

In addition, the use of different surface boundary conditions is

significant for problems involving the formation of leading edge vortices

on wings with rounded leading edges. Figure 7 shows an example of this for

a wing with a leading edge sweep angle of 71.2 degrees and a NACA 0012

airfoil. The figure shows a crossflow plane cut of the wing with crossflow

velocity vectors drawn for two flow solutions from FL057 at eighteen

degrees angle of attack. The solution on the top was obtained by
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Crossflow Velocity Vectors
Angle of Attack is 18 Degrees
Psurface " Pc.12 Boundary Condition

Crossflow Velocity Vectors
Angle of Attack is 18 Degrees
Normal Momemtum Equation Boundary Condition

Figure 7. Effect of surface boundary condition on vortex rollup
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extrapolating surface pressures from the boundary cell centers to the wing

surface using the momentum equation normal to the surface, while the one on

the bottom came from setting the surface pressure equal to the boundary

cell pressure. As can be seen, the normal momentum equation boundary

condition prevented the vortex from developing. These numerical

difficulties with the formulation of Euler solvers and th- choice of grids

limit the degree to which they can be used in vortical flow research.
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CHAPTER 3

MODEL DEVELOPMENT

3.1 VORTEX CORE MODEL

A model for the vortex core is derived from the steady, incompressible

Navier-Stokes equations written for the cylindrical coordinate system

centered on a vortex core. The modeling process is similar to that

developed by Mager [27] and Krause, [28] but the present model includes

approximations for non-axisymmetric wall effects. The vortex is assumed to

be slender and close to a wing surface and a plane of symmetry. The

velocity components u, v, and w are defined along the x, r, and 9

coordinates which correspond to axial, radial, and circumferential

directions. With these assumptions, the Navier-Stokes equations can be

written:
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au av v lawau + - 0 (7a)
ax ar r r a0

au du wau lap (a'u _ u au I _[2_u1U= +; V + + (7 b)
'a X r r Xp p jx 2  Jr 2 rdr r2ae2)

Jv aV way w 2  I ap

J x 4r r a r par

i, 2V a2 V I du u I a2 v 2 2aw (7cax2  dr2  rar r2  r2 dO2  r2dO)

dw dw waw vwi I apr ar rpr

+4~ _ a2W2 I aW W I a2 w 2 aVu(7d
p ( x 2  ar 2  rar r 2 r 2 a 0 2 r 27d0

where p is the pressure, p is the density, and p is the air viscosity. In

a manner similar to boundary layer analysis, a small parameter, E is

defined by the equation

6 *,

L

where L is the reference axial length scale of the vortex and 6,, is the

vortex core radius at x - L. It is further assumed that the ratios of

radial distances and velocities to their axial counterparts are also of the

same order as E. To non-dimensionalize equations (7), x is normalized by

L, but r is normalized by E L. In this way the very small radial
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coordinate is scaled to be of the same order of magnitude as the axial

coordinate. In a similar manner, u and w are normalized by the free stream

velocity, U. , but v is normalized by EU.. Pressure is normalized by free

stream dynamic pressure, pU. In addition, the vortex Reynolds number is

defined as

pU.LRe-

When the non-dimensional variables are substituted into equations (7) and

common multiples of L, U. and E are divided out the equations can be

written

du dv v 1 dw+ + + = 0 (8a),4x Jr r Cr JO

du dLu wdu dp 1l(' ,_+au+ldu+ 1 d'u\ _
-2 -U I ) I (8b)

'X r EraO J x Ree 2  x dr2  rar rad9( )

2( dv dv) IEWaV W2  dpE +V- - - --
ax dr r dG r dr

1 2 V 2 v I dv V I a2v 2 aw
Re X2 ar 2 rdJr r 2 r 2 )0 2 Cr2-de (8c)

dJw w w w uw 1 4p
au dr Cr aO r er dO

+1( 2
2 W d2W 14 l W I d 2 W Ed43\+ - -- 2-- +2 ) (8d)
RjX2 ar2 r ar r2 r 2 -r
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Next, the parameter E is assumed to scale with the inverse of the

square root of the Reynolds number. For very large Reynolds numbers, it is

therefore assumed that terms of order E, 1/Re, E, and l/(ReE) are

negligible. After eliminating these terms, the equations of motion

become:

du av v 1 4w
-+-+_+-- . 0 (9a)
dx 4r r Er 40

au +u +wu ap 1 I I a ( du' 1 a2 u(
4x X r r 4ax Re 2  r r 2O9

r 2 r 
(9c)

JW dW w W Vw I lp
'ax r er O0 r Er dO

+Re arkrrw) r 2 02  (9d)

The above equations are integrated algebraically by defining radial

distributions or profiles of the axial and circumferential velocities

within the core. A number of profiles which have been used for this

purpose are described in Appendix A. Since all of these profiles are

axisymmetric, derivatives in the circumferential direction for these

profiles are zero, and the equations to be integrated reduce to
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au v V
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UJx r r Re2E 2 r(rr ))

In many of the velocity profiles, such as the Rankine vortex, the radial

velocity, v, is also assumed to be zero. This further simplifies the

formulation. For the purposes of the present work, v is generally not

assumed to be zero, and the vortices are only assumed to be nearly

axisymmetric, so that derivatives in the circumferential direction are

small but not necessarily zero.

To include non-axisymmetric wall effects, the concept of image

vortices is used. The non-axisymmetric velocity profiles for a vortex near

a wall are approximated by adding to the axisymmetric profiles the

velocities induced by the image vortices. In order to facilitate

evaluation of the image vortex velocities, a wing-centered Cartesian

coordinate system is defined with X, Y, and Z as chordwise, vertical, and

spanwise coordinates respectively. This Cartesian coordinate system is the

same as that used by the Euler solver. Figure 8 illustrates the

relationship between the vortex-centered xrO system and the Cartesian

system. In the XYZ system, two non-dimensional distances and two angles

are defined as follows:
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1 = Yor - Y wig1 careo symm
6 rel 6 ra

-2tanz I diX)= 2tan d X

Figure 8 also illustrates these distances and angles. For infinite image

vortices, the induced v and w velocities in the vortex coordinate system

are given by

V F - r (COSY 2 2 ycos 12 ostO2 + COSzr2 21zsinO 12sin 0)=-2 +r (°Sr +4ysn+ 1r -41zrcosO+4 z 21z

+ ( 2lycosO+21zsinO lycosO+ Lzsin 0'

WY Z\,2 + 4 tyr sin 0-4 1r cO9+4 12 +4 12 12 + 12

2 t ( r + 4 yrsinO+4  zr 2 1Y ) (2 4 1 z rcosO+4z 2 1z

+ r+21 sin6-21zcosO lysinO-1lcosO

2.n r 2 +41rsinO-41zrcosO+412+412 12 +z

(10b)

See Appendix B for a derivation of equations (10).

For the problems considered in the present work, *y is small and lz is

large compared with ly. Image vortex induced u velocities are therefore

ignored. The image vortex induced w velocity is added to the chosen

axisymmetric w profile to obtain the total w velocity distribution.

With the circumferential velocity profile specified, equation (9 c) is
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integrated from the vortex center, r - 0, to the edge of the core, r - 6.

After removing negligible terms, the relationship between the pressure at

the core edge and pressure at the vortex center is given by

F 2  F2C
p(x,O) = p(x,6)-K.--+K,

a

where the vortex core area, a and the circulation, F are defined as

a = j762 and F = 2116w 6

respectively, and C# is the wall effect parameter given by

cos Y cosZ COSOyCOSOz
CO = t2 12 2 (12)Y z lY z

The coefficients Ka and Ki depend on the choice of the circumferential

velocity profile. In addition, for cases where the image vortices are not

infinite, the value of Ki is reduced to approximate this fact. An example

of the evaluation of Ka and Ki for the case of a Rankine vortex plus the

image vortex velocities is given in Appendix D.

The v velocity profile is next obtained by integrating equation (9a)

in the radial direction. To simplify this process, the equation is first

integrated using the axisymmetric u and w profiles to obtain v for the

axisymmetric case. The non-axisymmetric v defined by equation (10a) is

then added to the axisymmetric v. An example of this process is also given

in Appendix D. With the profiles for the three components of velocity

known, equation (9d) is integrated over the area of the vortex core to

obtain:
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Ida KdF K 2 du 6  K3 (13)
adx F dx U 6 dx ReE 2au 6

where the values of K1 , K2 , and K3 depend on the velocity profiles chosen.

For the Rankine vortex circumferential velocity profile, K2 and K3 are zero

and Ki is one. In this case, equation (13) gives

a c(F

which implies that core area increases linearly with vortex strength. In

the velocity profiles defined by Mager, K1 and K2 are not constants but

depend on the form parameter of the axial velocity profile. This form

parameter varies upstream of bursting from 1 for a uniform axial flow to 0

when stagnation occurs at the vortex center. See Appendix D for an example

of the effect this has on equation (13). In order to simplify the model,

average values of Ki and K2 are used.

For such complex velocity profiles as Mager's, it is more difficult to

integrate equation (13). Two extreme cases are considered, each of which

permits (13) to be integrated easily. First, it is assumed that vortex

strength is increasing rapidly and the viscous term of (13) can be

neglected. For this case the equation can be integrated to give

F K
a K4 K

U 6

where K4 is a constant of integration. On the other hand, consider a case

where vortex strength and velocity at the core edge are constant. For

these assumptions, equation (13) would be solved by
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K 3 (X-Xo)
a - ReE 2  

u6

where xO is a constant of integration. By choosing a suitable coefficient

K5 to replace K3 the above expression for core area could be written

FIx-xo)
a - Ks U5

U6

Based on these two results, the following approximate model for core growth

is defined:

rX(X - X) (14)
a - Kg K 2

U6

where K. is a core growth parameter which depends on the velocity profiles

and the product Re C2.

Next, the circumferential velocity profile is assumed to be close to

that of a Rankine vortex, so the radial distribution of pressure in the

vortex core can be approximated by

p(x, r) -p(x,0) + ()(p(x,6)-p(x,O)). (S

Using equations (11) and (15), equation (9b) is integrated over the area of

the core to give
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duo + dpo K (rdF F 2 da)
u° dx dx adx a2dx

F 2 da F 2 dC.(

dx 2adx 2 dx )

where the subscript 0 designates core center values. It is worthwhile to

point out that the contribution of the viscous term disappears in the

integration if the axial velocity profile is defined as in Mager's profile

with zero slopes at the center and the edge of the core.

If the velocity profiles of the viscous core and those in Euler

solutions are similar, then the major discrepancy of the Euler formulation

is primarily due to the non-physical estimation of core size and core

growth rate. Therefore, the non-physical vortex core in Euler solutions

can be replaced with a core that is derived from viscous physics, as given

in equation (16). This is in effect equivalent to an addition of the

difference between the model and the Euler solution as a source term into

the Euler formulation. The difference can be given as

duo dp) duo+ dpo
(uodx ) -(u dx dx

-K rf-L(, a )r 2 (da a 2 dac1
oax aE) a2 dx a 2dx

(da a da1 \
-K - C -(d (17)

-2a dx aE dx (

where the subscript E denotes flow quantities measured in the Euler

solution.
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Equation (17) provides momentum source terms for use in the Euler

solver. Because the vortex x axis is not alligned with the wing X axis,

components of the source term for each cell must be applied to the X, Y,

and Z momenzum equations in the Euler solver.

3.2 SHEAR LAYER MODEL

The viscous shear layer next to a highly swept wing at a large angle

of attack is too complex to model with simple physics. The flowfield

involves many difficult features including the mechanism for leading edge

separation and creation of leading edge vortices, reattachment of the flow

around the primary vortex, appearance of a secondary vortex separation,

etc. As a simple approximation of these complexities, an analogy is made

to the boundary layer on a flat plate. Boundary layer separation can be

explained as being caused by loss of total pressure in the boundary layer

due to viscosity. This same concept is extended to explain leading edge

separation on a highly swept rounded leading edge. Total pressure loss in

a boundary layer is approximated as being of such a magnitude that static

pressure at the boundary layer edge is equal to the pressure at the flat

plate surface. For the rounded leading edge, an effective shear layer

thickness is defined such that total pressure losses satisfy this same

equality of static pressures at the shear layer edge and at the surface.

The magnitude of this effective thickness will be different than for a flat

plate boundary layer. It is assumed, however, that the growth profile of

the effective shear layer thickness can be approximated by a simple

modification to the well known equation for turbulent boundary layer growth

on a flat plate given by Schlichting [38]. The modified equation is

written
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68 K, (18)

where Re,.oca is the local Reynolds number based on the distance 1 measured

from the apex of the delta wing and 6, is the effective shear layer

thickness. The coefficient Kt is an effective thickness parameter which

equals 0.37 for a flat plate, but which is much greater for the round

leading edge. This shear layer thickness effect is incorporated into the

Euler solver by modifying the normal momentum equation boundary condition.

Instead of extrapolating pressure from the cell center all the way to the

wing surface, the modified boundary condition uses the relation

dPAn- 6,) (19)
= dn

where pc.11 is the pressure at the center of the boundary cell, dp/dn is the

pressure gradient in the direction normal to the surface, and jn is the

normal distance between the surface and the cell center.

In addition to corrections for the surface pressure, the analogy with

the flat plate boundary layer is used to calculate momentum source terms

for the boundary cells. These source terms are similar to those calculated

by the vortex core model. They represent the net momentum loss experienced

by the boundary cells due to the shear layer. If the entire shear layer is

contained within the boundary cells, the skin friction coefficient, Cf, is

a measure of this momentum transfer from the fluid in the boundary cell to

the wing surface. Using the analogy with a flat plate boundary layer once

again, the equation for Cf in the shear layer is approximated as

K,
C1 -(Re oo (20)
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K. in equation (20) is a wall shear stress parameter which equals 0.074 for

a flat plate boundary layer. The shear stress source terms are added into

the momentum equations in a direction parallel to the local velocity in

each boundary cell.

3.3 MODEL IMPLEMENTATION

The vortex core model is incorporated into the Euler solver as a

separate subroutine which is accessed periodically. The control parameters

Kg, Ka, and Ki are input into the program by the user and used unchanged

throughout the solution process. The exponents K, and K2 in equation (14)

are both assumed to be approximately equal to 1. The total circulation or

vortex strength and the Euler vortex core size are determined from the

Euler solution at axial locations along the vortex corresponding to

convenient locations in the Euler grid. The vortex strength is obtained by

evaluating the vorticity flux through the surfaces of each cell and summing

them. The area of the vortex core is measured from the cross sectional

areas of the cells which contain vorticity of strength above a given

threshold level. The center of the vortex at each axial station is

identified as the cell with a local minimum static pressure and a local

maximum vorticity flux. Locating the vortex center establishes the values

of C. in equation (12). The axial momentum source terms at each axial

position along the vortex are then obtained from equation (17).

When the momentum source terms are added in, the equation solved by

the Euler code is of the form

z(h v)+Qtb-D v-S - 0
43- 0
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where the S term represents the momentum sources from the core model. To

avoid destabilizing the solution, source terms are not just applied to the

cell at the vortex center. Terms for neighboring cells are scaled in

accordance with their distance from the center following a profile similar

to the axial velocity profiles used by Mager. In order to reduce

computational costs, these corrections are updated only once every 30 to 50

iterations.

The new boundary condition is incorporated into the Euler solver by

modifying the surface boundary condition subroutine. The desired values of

effective thickness parameter and shear stress parameter are input to the

program. These values are used to calculate the effective viscous layer

thickness for each boundary cell using equation (18). The pressure at the

surface is then defined using equation (19). Momentum source terms for the

boundary cells are scaled by the local values of skin friction coefficient

given by equation (20).
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CHAPTER 4

CORE MODEL EVALUATION

4.1 RECTANGULAR GRID EXPERIMENT

A simple computational experiment was performed which simulated a

vortex near an infinite flat plate and a plane of symmetry. The experiment

had three purposes. The first of these was to identify some of the

characteristics of Euler codes which cause problems in vortex simulations.

The second was to evaluate some of the assumptions and approximations used

in developing the vortex core model. The third purpose was to provide a

simple computational problem for the first tests of the vortex core model.

A computational grid was defined in the shape of a rectangular box.

The flowfield within the box was initialized with a uniform flow parallel

to the top, bottom, and sides of the box. To this was added a vortex whose

axis ran parallel to the uniform flow. This vortex flowfield was also used

as an inflow boundary condition on the upstream end of the box. A solid

surface boundary condition was imposed on the bottom surface of the box and
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one of the sides of the box was made a plane of symmetry. The other three

box faces were given farfield boundary conditions.

The motivation of this study was to isolate the difficult

computational issues arising from the complicated geometries and flowfields

associated with delta wings. Such factors as leading edge separation,

vortex rollup, and the pressure fields associated with wing airfoil shapes

were completely excluded from the test. Other factors such as vortex

strength, location, and core size could be controlled individually. The

two different Euler solvers discussed in Chapter 2 were used in the tests.

Both gave essentially the same results.

The first test involved initializing the flow field with a potential

vortex. In order to avoid a singularity at the vortex center, the vortex

was centered on a grid node so that induced velocities at the cell centers

were finite for FL057 and vice versa for ARC3D. This caused the entire

flow field to be initially irrotational. This velocity distribution could

also be regarded as that from a Rankine vortex with a core diameter equal

to the width of a single grid cell. The velocity fields induced by three

image vorticies were also added to the initialization so that normal

velocities at the flat plate and the plane of symmetry were zero. When the

Euler code was run, the action of the numerical viscosity in the flow

solver caused the vortex core to enlarge to cover a region eight to ten

cells in diameter. This growth in core size occurred within the first 2

cells downstream of the upstream boundary. Total swirl or vortex strength

was conserved, so maximum circumferential velocity in the vortex decreased

dramatically in this relatively short downstream distance. The reduction

in maximum circumferential velocity was accompanied by an increase in

pressure along the central axis of the vortex. Since the upstream boundary

condition was inflow, the velocity profile there did not change with

iterations. With a potential vortex at the upstream boundary and a more

diffuse core just a few cells downstream, a strong pressure gradient was
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created which was opposite to the direction of the axial flow in the vortex

core. This adverse pressure gradient caused a deficit in the axial flow

velocities in the core region and, in fact, the flow slowed to near

stagnation in the cells just downstream of the upstream boundary.

To avoid the near-bursting condition caused by the potential vortex

initial condition, a more "natural" circumferential velocity profile was

used. This velocity distribution was obtained from the original potential

vortex solution at a location 5 to 8 cells downstream of the point where

the core grows to its equilibrium size. The shape of this profile was

determined by the numerical viscosity, but it was very similar to Mager's

analytic velocity profile (see Appendix A). Figure 9 compares radial

distributions of circumferential velocity and circulation for Mager's

profile and for a Rankine vortex with a typical profile from the Euler

solution. Note that the Euler results are extremely close to the Mager

profile.

The solutions obtained with this Mager-like upstream boundary

condition are quite well behaved. Such flow quantities as core diameter,

total circulation, and axial velocity are essentially constant down the

length of the vortex. The only quantity which varies significantly in the

axial direction is the distance of the vortex from the flat plate and the

symmetry plane. The image vortex-induced velocity resulting from the

proximity of the vortex to a solid wall causes the distance of the vortex

from the plane of symmetry to increase with increasing downstream distance.

The wall effect also causes the vortex to move slightly closer to the flat

plate as it moves downstream. The magnitudes of the self-induced

velocities in the Euler solution agree very well with what is predicted

using the concept of image vortices. A very slight increase in minimum

core pressure was noted as the vortex moved closer to the flat plate.

Figures 10, 11, 12, and 13 show crossflow plane streamlines, velocity

vectors, vorticity contours, and pressure contours for a typical flowfield
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Figure 10. Rectaaigular grid study crossflov streamlines. Flat plate surface
is at the bottom and plane of symmetry is at right.
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Figure 12. Rectangular grid study crossflow plane pressure contours. Flat
plate surface is at the bottom and plane of symmetry is at right.
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Figure 13. Rectangular grid study crossflow plane vorticity contours. Flat
plate surface is at the bottom and plane of symmetry is at right.
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at a point halfway down the length of the vortex. Tick marks on the frame

of the two latter plots correspond to individual cells on the uniform

rectangular grid. Note that the region of reduced static pressure spans

approximately ten cells. The region of significant vorticity is also about

ten cells in diameter. Outside this rotational core, however, the rest of

the flowfield is very nearly irrotational. This result suggests that the

use of irrotational image vortices in the vortex core model is acceptable.

As a further evaluation of the use of irrotational image vortices in the

core model, Figure 14 shows a crossflow streamline plot for a Mager profile

with image vortex velocities added to it. The value of the stream function

used for this plot is adjusted so that the streamline labeled 0 is the core

edge. Note the very good agreement between this plot and Figure 10.

The relationship in the core model for the variation of core pressure

with distance from walls can be evaluated by comparing it to pressure

variations in the Euler solutions. Figure 15 plots vortex core pressure

for two Euler solutions as a function of the wall proximity parameter C*.

The solid line on the plot represents the pressure variation predicted

using the vortex core model equation (11). Equation (11) appears to be a

very good approximation for the effect of walls on core pressure.

Several tests were made to evaluate grid effects in the flow

solutions. The first test was a study of the effect of the overall size of

the grid on the flow solution. It was observed early in the research that

if the grid was so small that the image vortex velocity caused the vortex

to move into the cells adjacent to the lateral far field boundary, the

boundary conditions used could not keep the vortex core intact. For a grid

with 18 cells in the X direction, a Y-Z plane which was 32 cells high and

48 cells wide seemed to give good results, with the vortex never getting

clos,-r to the far field than Y - 11 and Z - 23. When this grid was reduced

in size to 24 by 36, a 0.3% increase could be seen in the minimum pressures
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Figure 14. Crossflow streamlines for Mager profile plus image vortices.
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along the vortex core and the image vortex-induced velocity of the vortex

core was 10% less. However, when the grid size was increased to 40 x 60,

the difference in minimum core pressures was less than 0.1% and the lateral

motion of the core showed no difference from that on the 32 x 48 grid. A

study was also made of the effect of stretching the outer cells to place

the far field boundaries even further away. For the 18 x 32 x 48 grid,

stretching of the outer 6 cells in both the Y and Z directions had little

effect on the solutions.

In order to evaluate the effects of cell aspect ratio on the quality

of the flow solution, several test runs were made with the cells elongated

or shortened by changing the grid spacing in the X or streamwise direction.

In general, the effect of stretching or shortening the cells was negligible

over a grid spacing from .5 to 2. in the X direction with the Y and Z grid

spacing constant at 1.

The effect of grid skewing on the quality of the solution was also

investigated. Since the image vortex velocities caused the vortex to move

at an angle from the axial direction, the grid was skewed at this angle to

keep the vortex in the cell with the same k index in each successive i

plane. The cells in the region between the vortex and the plane of

symmetry were stretched as necessary to keep the plane of symmetry parallel

to the free stream flow direction. Figure 16 shows three views of one of

these skewed grids, the grid labeled Grid A. The solutions obtained on

this grid for the same number of iterations differed less than 0.04% from

those obtained on the uniformly spaced grid, an almost indistinguishable

difference. However, the calculation converged faster on the skewed grid,

so the slight error which appears to exist between the two may be mostly a

measure of convergence. This result suggests that a reasonable amount of

grid skewness is tolerable in flow calculations around more complex

geometries.
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Figure 16. Skewed and stretched grids.
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Grid A in Figure 16 has a much finer grid spacing in the region where

the vortex core was placed, but it is stretched in the outer regions so the

far field is kept at the same distance as it was on the uniform grid. As

expected, a finer grid allowed a smaller vortex core since the core spread

over the same number of cells as in the uniform grid case. In order to

demonstrate the error this cell size effect could cause in a flow solution,

a grid was generated which had a grid spacing of one half unit in the area

of the vortex at the upstream end, but a spacing of 2 units at the

downstream end of the domain. Three views of the grid are also shown in

Figure 16 and labeled Grid B. The grid spacing in the streamwise or X

direction was one unit throughout the domain, so the cells expanded from .5

x .5 to 2 x 2 in a distance of 18 units. This rate of grid expansion is

much less than that of many grids commonly used for computations of flows

around wings (see Rizzi [19] for example). However, when a vortex with a

core of the minimum size resolvable by the Euler code on a given region of

the grid was caused to flow into a part of the grid where the cell size was

increasing, the vortex core also enlarged. Since the flow solver preserved

the total swirl of the vortex, this non-physical growth of the core caused

reduced circumferential velocities and increased pressures in proportion to

the enlargement of the cells. Figure 17 compares side views of the two

grids with velocity vector arrows drawn for their respective flow

solutions. In the flowfield for Grid B, it is apparent that the adverse

pressure gradient within the vortex core has created a reversal in the

axial flow within the core similar to that which characterizes vortex

bursting. The test case run with identical flow conditions and boundary

conditions on Grid A shows only a slight reduction in axial flow

velocities. Figure 18 plots the axial variation of pressure for the two

solutions of Figure 17.
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Two general conclusions can be drawn from the results of these tests.

First, the adverse effects of grid density and numerical viscosity on flow

solutions containing vortices were shown to be potentially very serious, to

the point of causing bursting. Second, many of the assumptions used in

deriving the vortex core model were shown to be reasonable and compatible

with the Euler formulation.

4.2 BURSTING CONTROL DEMONSTRATION

The vortex core model should be able to correct for or reduce the

effects of grids and numerical viscosity in two ways. If axial velocity

defects or bursting are caused by an expanding grid, the vortex core model

should be able to correct for that effect when the physical vortex core is

modeled with no rate of growth. On the other hand, if the grid is uniform

and little or no axial velocity defect is present in the flow solution,

then by modeling a physical core with a rapid rate of growth, the vortex

core model should be able to produce bursting.

Both these capabilities were successfully demonstrated. Figure 19

shows side views of velocity vectors in the vertical plane containing the

vortex for two different flow solutions on Grid A. The solution on the

left was obtained using an Euler solver alone. The one on the right came

from an Euler solver with the vortex core model. For this test, the

physical core was modeled as growing very rapidly by giving the vortex

growth parameter a large value. The vortex bursting produced by the model

is apparent.

Figure 20 shows a demonstration of the model's ability to eliminate

grid-induced vortex bursting on Grid B. The flow solution with

grid-induced bursting on the left is for an Euler solver alone, while the
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solution on the right is for the Euler solver with core model. For this

test, the physical core size was arbitrarily set to the same constant value

down the length of the vortex. Since no axial pressure gradient should

develop if core area is constant, the model generated source terms which

eliminated the grid-induced bursting.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 DELTA WING BURSTING STUDY

The vortex core model was tested to assess its ability to predict the

onset of bursting on four different delta wings. Grids with H-O topology

were used around flat plate delta wings with sweep angles varying from 55

to 76 degrees. All grids used were 57 x 21 x 33 with 25 x 33 points on the

wing surface. Figure 21 shows planform views of the right half of each

wing used for the test. Mach number for all these tests was 0.2.

The first wing tested was swept 65 degrees. Flow solutions were first

obtained for this wing using the Euler solver alone. It was discovered

that at angles of attack above 25 degrees, some bursting was present in the

Euler solutions. This was not surprising, since cell sizes in the grid

increased in the streamwise direction, forcing the vortex core in the Euler

solution to grow. The locations of the bursting points did not, however

agree with available wind tunnel data [4] for this wing. This suggests

63



0

inA

>.

0

646



that the rate of core growth induced by the grid was not the same as that

of the physical vortex in the wind tunnel tests.

For the core model tests, a value for K9 was chosen which gave the

same core area at the wing trailing edge as that in the Euler solution.

For this situation, the difference between the Euler core and the model

core was limited to differences in the core growth profile, but not in the

final core size. Appropriate values of Ka and Ki were determined by trial

and error. The values calculated for the Rankine vortex and Mager's

profiles were used as initial guesses, but these proved to be too large.

When these large values were used, the solution was destabilized and caused

to diverge rapidly. As smaller values of Ka and Ki were tried, a range was

found where they were not so small that they did not produce an effect, but

not so large that they caused instability. Well within the bounds of this

range, values were found which allowed the model to generate source terms

which brought the bursting locations in the resulting solution into very

close agreement with the wind tunnel data. Figure 22 shows a comparison

between bursting locations for the Euler alone solutions and the results

from the Euler code with core model. Wind tunnel data for the same wing

are also plotted. As can be seen, the agreement between the wind tunnel

data and the model results is very good over the entire range of angles of

attack, except at the very highest angles. Here the Euler solver with

model could never quite get bursting to progress all the way to the apex.

This trend is visible in the Euler alone solution as well, and was common

in all the other delta wing bursting tests made.

At the lower angles of attack, the method experienced some

instability. This was overcome by increasing the number of iterations of

the Euler solver between updates of the core model momentum source terms.

The source terms were applied at each iteration, but their values were
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Figure 22. Variation of bursting location with angle of attack for 65 degree
delta wing.
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updated only periodically. For angles of attack above 25 degrees, source

terms were updated every 50 iterations of the Euler solver. For 20 and 23

degrees angle of attack, updates were done only once every 150 iterations.

In both cases, as the flow solutions progressed, the magnitude of the

source terms decreased with each update. In the final converged solutions,

the momentum sources were usually about 10% or less of their initial

values.

The next test of the core model was to determine if the same values

for Kg, Ka, and Ki would produce equally good results on delta wings with

much different planforms. A 75 degree delta wing was first tested. Figure

23 shows bursting location curves for this wing for Euler, Euler with core

model, and wind tunnel results. Agreement with the wind tunnel data of

Wentz [4] is better than Euler alone results, but not as good as for the 65

degree delta wing. When the wind tunnel data of Payne and Nelson for this

wing is plotted, however, the agreement is improved.

Tests were also made on a 55 degree delta. Figure 24 plots these

results. Once again, the agreement between Euler with model results and

wind tunnel data is better than for the Euler alone solutions, though not

as good as for the 65 degree wing.

In order to compare results from the core model with a Navier-Stokes

solution, a fourth delta wing was tested. This wing had an aspect ratio of

1 and a sweep angle of approximately 76 degrees. Figure 25 compares the

resulting bursting location versus angle of attack curves with the single

Navier-Stokes result [39]. Of significance in evaluating the usefulness of

the present method is the fact that all of the Euler and Euler with model

solutions obtained for this test required less total computation time than

the single Navier-Stokes result.

Figure 26 shows spanwise surface pressure coefficient distributions at

the midpoint of the root chord of the aspect ratio 1 delta wing at 20.5
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degrees angle of attack. At this angle of attack, the vortex does not

burst over any part of the wing. The Cp curve predicted by the Euler

solver with the core model is compared with curves from the Euler solver

alone and from Navier-Stokes simulations [39] and wind tunnel tests [2].

Note that neither of the Euler solvers captured the secondary vortex

influence on the CP curve which is evident in the wind tunnel data and

Navier-Stokes solutions. However, the vortex core model does allow the

modified Euler code to predict the peak of the CP curve in closer agreement

with experiment. Although bursting does not occur in this flow solution,

the core model still has an effect on the axial velocities in the core. As

axial velocities are decreased, the core expands slightly, reducing

circumferential velocities and increasing core pressure. Figure 27

compares velocity vectors in a nearly horizontal plane which is parallel to

the Z axis and contains the vortex axis for the same wing at 40 degrees

angle of attack. The result from the Euler code alone shows the bursting

point at an axial station about 70% of the root chord downstream of the

wing apex. The Euler code with core model gives the bursting point at

about 30% root chord, which does agree better with Navier-Stokes results

[3 9j . Figure 28 compares the corresponding CP curves for the two solutions

at 50% root chord. The vortex at that station has burst in the Euler with

model solution, but not in the Euler alone solution. Note the flattening

of the CP curve when bursting has occurred.

5.2 BOUNDARY CONDITION COMPARISONS

The shear layer model surface boundary condition was tested on the

arrow wing shown in Figure 6. As a basis for comparison, test runs were

first made using FL057 with two choices of surface boundary conditions.
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The first of these extrapolates surface pressure from the boundary cell

center using the momentum equation normal to the wing surface. The second

simply equates pressure at the surface to pressure at the cell center.

Surface pressure plots for a range of angles of attack for the two boundary

conditions are compared with wind tunnel data [40] in Figure 29. The

tendency for the momentum boundary condition to delay leading edge

separation is apparent. Likewise, the vortex appears to develop too

quickly when using the simple boundary condition which equates surface

pressure to boundary cell pressure. Figure 30 shows results using the new

boundary condition with the shear layer model at four degrees angle of

attack for a range of values of the effective shear layer thickness

parameter, Kt. Wind tunnel results are shown for comparison. Reynolds

number is 6 million for both the computer model and the wind tunnel tests.

A value of 2.1 for Kt appears to give the best results.

Figure 31 compares surface pressure plots from wind tunnel tests with

those for the shear layer model surface boundary condition for a range of

angles of attack. Kt was held constant at 2.1 for this simulation. Note

that the new boundary condition results match the wind tunnel data better

than results for either of the old boundary conditions, especially for

angles of attack of eight degrees and less. At 10 degrees, a difference

can be seen between the location of the Euler with model vortex and the

wind tunnel vortex. This difference may be due to the crude approximation

of the viscous effects in the shear layer used in developing the present

model.

For the preceding tests, the shear stress parameter, K. was left equal

to zero. For another set of tests, K. was set equal to 0.074 and used in

the Euler solver with the shear layer model on two different cropped delta

wings at relatively large angles of attack. Both wings had sweep angles of

65 degrees and taper ratios of 0.15. The first wing used a NACA 0012
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Figure 29. Comparison of surface pressure contours on an arrow wing for wind
tunnel tests [40] and two Euler solutions with different surface boundary
conditions.
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airfoil. When a flow solution was obtained for this wing at 30 degrees

angle of attack, a secondary vortex was seen in the flowfield between the

primary vortex and the leading edge. Figure 32 shows crossflow velocity

vectors at X/Croot - 0.5 for this result compared with results from an Euler

solver alone for the same wing and flow conditions. The secondary vortex

is made especially visible by the contrast with the Euler alone solution.

In the second test, a delta wing with the same planform but a NACA

65A005 airfoil was tested at 20 degrees angle of attack. Ks was again set

to 0.074. Figure 33 shows surface pressure contours for this result

compared Euler alone results for the same wing and flow conditions. Note

that the secondary vortex causes the primary vortex to move inboard and

that a small local trough of pressure coefficient develops under the

secondary vortex. Figure 34 shows crossflow velocity vectors for these

conditions. The secondary vortex is just barely visible as only a single

row of three arrows a little inboard of the leading edge. Figure 35 shows

velocity vectors on the surface of the wing for the Euler alone solution

and the Euler with model results. The secondary separation line is

visible, as is the area of inboard flow under the secondary vortex.

78



f-4

0

4

0

i4)

c)

0

P 4

*-4% Q0
r-40w

0-4

79



'4)

0

10

0"

'044

0u
0 4

00r

4)0

0 i

0) C4'

0
44

0

bo<

80



IN

/ / / I \ !

Figure 34. Crossflow velocity vectors at X/Croot - 0.87 for a 65 degree delta

wing with a NACA 65A005 airfoil at 20 degrees angle of attack.

81



-44

0 Q
---- ~~4 -

Q bo

-,G

0 b

Q) CN
Q

- - (cc 4-1

~~~~~. m~-- -

S$d

4O

82



CHAPTER 6

CONCLUSIONS

A vortex core model has been derived which introduces the effects of

physical viscosity for vortex cores into computer solutions of the

3-dimensional Euler equations. The formulation of this model allows it to

replace the effects of numerical viscosity in the solution with those based

on physical viscosity. The model has been used to predict the onset and

location of vortex bursting on a variety of delta wings. In each case, the

Euler code with the core model predicted bursting locations as a function

of angle of attack which were in much better agreement with wind tunnel

data and Navier-Stokes simulations than the results for an Euler code

alone. The same values of the model control parameters produced reasonably

good results for all the tests. Such good performance for a variety of

wirgs and angles of attack without any adjustments of the model control

parameters is a strong argument that the approximations made in deriving

the model are acceptable, and that the model is useful. The core model

also produced favorable effects on wing surface pressure distributions
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which agree with wind tunnel results and Navier-Stokes simulations better

than results from the Euler code alone. This improvement is seen whether

or not bursting is present in the solution.

Another model which describes viscosity effects in the viscous shear

layer near highly swept wings has also been derived. The model uses an

analogy to the boundary layer on a flat plate to make a correction to the

pressure on the wing surface. This pressure correction accounts Eor total

pressure losses due to viscous dissipation in the shear layer, and

contributes to the leading edge separation which rolls up into a leading

edge vortex. The model also calculates momentum source terms for the grid

cells next to the wing surface to account for the net momentum loss in

these cells due to viscosity. The new boundary condition has been tested

on several highly swept wings with rounded leading edges for a range of

angles of attack. Surface pressure distributions for these tests were

found to be in better agreement with wind tunnel tests of the same wing

geometry than results for an Euler code with conventional boundary

conditions. At higher angles of attack, a secondary separation and

secondary vortex could be seen in the flow solution. This feature makes

these flow solutions more similar to Navier-Stokes solutions and wind

tunnel tests than any solutions from Euler solvers alone.

The two models for vortex-related viscosity effects which have been

developed in the present work can be extended in many ways to improve their

capabilities. The success of these models and the great need for the

capability they can provide make such extensions very attractive.

The next logical step for the vortex core model is to extend it to

include compressibility effects so the model could be used for higher Mach

number problems. An extension of the model to include unsteady flow could

also be done. This might have applications for time-accurate simulations

of vortex bursting used to determine aircraft stability derivatives.

Higher order approximations for the vortex core growth model could also be
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developed. This could even be formulated as a differential equation which

is integrated numerically whenever the model sources terms are updated.

The shear layer model could also be extended to include

compressibility and unsteady effects. The first step, however, should be

to use a model for the shear layer thickness and shear stress which

accounts for geometry effects such as leading edge curvature and sweep

angle and the presence of a flow reattachment line. This should permit the

model to be used for a greater variety of wing shapes without changing the

control parameters.
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APPENDIX A

VORTEX VELOCITY PROFILES

A great number of vortex velocity profiles have been defined as solutions

to simplified versions of the Navier-Stokes equations or as approximations to

the velocity distributions measured in real vortices. The most important of

these will be described in a generally chronological order.

The point vortex is a two-dimensional circulating flow which solves

Laplace's equation. The line vortex is a three-dimensional extension of the

point vortex. Both are sometimes referred to as potential vortices because

their flowfields are irrotational everywhere but at their exact center. The

line vortex velocity profile is given by

u = constant

v O0

Fw =
2nr

The Rankine vortex is obtained by replacing the central part of a

potential vortex with a core which rotates as a solid body. Its velocity

profiles are given by

u = constant
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Frw r 6

w - r 6
2.nr

The Rankine vortex has been used by Jones [34] and Keller, Egli, and Exley

[41], among others, for vortex stability analysis and bursting prediction.

Lamb's vortex was derived as a solution for the decay of what is

initially an infinite line vortex. The time dependent velocity profiles are

given by

u = constant

w = 0

F_ l( r2
w - _r

Hall's vortex was derived as a solution to the Euler equations for a

slender conical vortex core. The velocity profiles are

S r)
u - C (K-In 6 )
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V Cr
U - -2 6

W= C K+ I--inr)
2 6

where K is a shape factor for the profile and C determines the magnitudes of

the velocities. This model was used by Hall [25], Anders [3] and others for

bursting studies. The singularity at the center must be avoided with a

patched solution to a diffusive subcore.

Mager defined his velocity profiles as polynomials which matched values

and slopes with a potential external flow at the core edge. Only the u and w

profiles were defined. The profiles for r < 6 are

U6 - L UL 6_UO )( )(r + 3(r)2)

For r > 6, the Mager vortex velocities are the same as for a potential vortex.

Several modifications of the Burgers vortex have been used. The Q

vortex, first proposed by Lessen [36], uses the Burgers vortex circumferential

velocity profile but a non-uniform axial profile. These profiles are

P2

U _ UO e6
2

U 91
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2
w =q I l 6 (1 -e-

where

- F
q 2n6u

0

Several other investigators have used this vortex model. In addition, Powell

and Murman [29] derived a conical analog to the Burgers vortex which is

represented as a system of ordinary differential equations.
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APPENDIX B

IMAGE VORTEX VELOCITY DERIVATION

Consider first the two-dimensional case. The primary vortex and three

image vortices are assumed to be infinite and parallel. The coordinate

systems and definitions used in Chapter 3 apply. The pertinant geometry for

this case is shown in Figure 32. Note that for simplicity in defining angles,

this figure views the crossflow plane from the upstream direction, while

Figures 8,9,10 and 11, for instance, view the problem from downstream. For

these assumptions, the stream function in the XYZ coordinate system due to the

image vortices is given by

_ F In r4

I=2n r 2 rj3

From the geometry of the problem, the following equalities hold:

(rsin0+21 ) 2 = (r 2 sin0 2 )2

(rcoS) 2  
- (r 2 coS0 2 )2

(rsin0) 2 = (r 3 sinO 3)2

(rcoso-2 z) 2 = (r.CoS0 3 ) 2

(rsin0+ 21) 2 = (r 4 sin04 )2

(rcosO-21z)2 = (r 4 cos04)2

These equations can be solved for r2, r 3 , and r 4 in terms of r to obtain
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0

'.4)

Q I4)

4w.
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r 2 = (r 2 +4lyrsinO+41 2

r 3 = (r 2 -4lzrcosO+412z)

r4 = (r 2 +41yrsinO-4zcosO+41 +41 2z

The stream function for the image vortices can therefore be written

= -I1n(r2+41yrsinO+4il)-2 n( r2 4lzrcosO+41Z)

Fn 2n r

+F r 2 + 41rsinO-41zrcosO+ 4 12 + 4 12
4",

Then the induced velocities in a cylindrical coordinate system fixed at the

present location of the vortex center would be

IaV, - F ( 21cosO + 21zsinO 1
r aO 2n r2+41yrsinO+4 Y r 2 -41zrcosO+41 Z

21 ( 2cosO+2lzsinO 
24J r 2 +41rsinO-41zrcosO+4 Y+4Z)

a r, F ( r+2ysinO r-2lz cos 0

Wl~ ~ 12 2r 124rsiO 4r
2Z \r +41rsin0+4~ Yr2 -41zrcosO+4lZ)

+F ( 2 r+2lysinO-2lzcosO 12 12- r2+4lIrsinO-4lzrcosO+4 1+4 1Z
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But the xre coordinate system is moving with the vortex core, so the

velocities induced at r - 0 must be subtracted off to yield the image vortex

velocities in the moving coordinate system as

r 2 2!ycosO 1 coso)+( 2 21sin9 1 sine
2ITr +41yrsinO+4 Y 2 r 2 -41zrcosO+4 z 2 1 z J

r 21ycosO+2tzsinO lrcosO+lzsinO)
21t r2 r+4 4yr1OT::zrcosO +4  IOt 2 12,+l

W= 1 2 r+2rsinO 12 sinO)(+ 2 r-2zcosO +-sO2 2--1 r +41yrsinO+4 12r 2 r -41zrcosO+412z 21z

I r + 21sin0-2lzcosO lrsinO-lzcosO)
21r r +4lrsinO-41zrcosO+412+4l /z + lz

Now, in the three dimensional case, the image vortices are not, in

general, parallel to the primary vortex, nor to each other. In this case, the

induced velocities must be multiplied by the cosines of the angles between the

primary vortex and the image vortices to get:

.1- - - fCOSdi221csO 1 - )OO+cosOz2 2zsine 12 si>
2--- (r +41yrsinO+4l, 2-y ) c (szr2 41zrcosO+4 z 21z

+ z(2yOzcosO+2in 4 ncosOL+ l sinO
2, -- COs Zh r 2 41yrsin-41rcos6+4 Y+4I 4Zr +Y

W M r+2IsinO COS2-21zcosO 1sin-zcosO

2n (r r+4rsinO- 4 zrcos+4 4 r+4 12 1r+ z 2
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APPENDIX C

WING GEOMETRY DATA

Three different types of wings are used in the present work. The first

group are delta wings with leading edge sweep angles ranging from 55 to 76

degrees. The second group of wings are highly swept and tapered. These wings

are often referred to as arrow wings. The third group are two cropped delta

wings with identical planforms but different airfoil sections.

Four different delta wings are used. All have very thin flat plate

airfoils. Pertinate data for these wings are listed in Table 1.

Sweep Angle Aspect Ratio Half Span/Root Chord

Wing 1 55 2.800 .7002

Wing 2 65 1.865 .4663

Wing 3 75 1.072 .2679

Wing 4 76 1.000 .2500

Table 1. Delta wing geometry data.
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The arrow wings had leading edge sweep angles of 71.2 degrees and taper

ratios of 0.10. Half span divided by root chord was 0.4545. The aspect ratio

was 1.653. Arrow wing number 1 had an NACA 0012 airfoil. Coordinates for the

airfoil section of the second arrow wing are listed in Table 2.

x Y
0.0000 0.0000
0.1250 0.3359
0.2500 0.4506
0.5000 0.6064
0.7500 0.7247

1.0000 0.8182
1.5000 0.9520
2.5000 1.1191
5.0000 1.3448
8.5000 1.4809

10.0000 1.5195
12.5000 1.5444
15.0000 1.5630
17.5000 1.5720
20.0000 1.5813
30.0000 1.6214
40.0000 1.6398
45.0000 1.6282
50.0000 1.5901
60.0000 1.4344
65.0000 1.3121
70.0000 1.1627
72.5000 1.0792
75.0000 0.9921
77.5000 0.9006
80.0000 0.8069
85.0000 0.6132
90.0000 0.4156
95.0000 0.2153

100.0000 0.0113

Table 2. Arrow wing number 2 airfoil coordinates.

The cropped delta wings had 65 degree swept leading edges and taper

ratios of 0.15. Half span divided by root chord was 0.3964 and aspect ratio

was 1.379. One wing used a NACA 0012 airfoil. The other used a NACA 65A005.
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APPENDIX D

EVALUATION OF MODEL CONSTANTS

Consider equation (9c). Three different w velocity profiles are chosen

and used to integrate (9c) to obtain a relationship between pressure at the

vortex center and pressure at the core edge. These profiles are the Rankine

vortex, Mager's vortex, and the Rankine vortex with image vortex induced

velocities added to it.

For the Rankine vortex, equation (9c) is integrated from the vortex

center to the vortex edge to yield

3 = 6w 2  6 Fr 21 2  6

J--dr J -dr = =rdrfo 3r for 2T62 r 426 f

or

r2 () = 2( IF 2

p(x,6)-p(x,O) = 4J(2-2(2 =

F 2

p(x,O) = p(x,6)-- 8nta

so

K,, 1 and K, - 0
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Next, using the Mager w velocity profile,

2r r

r 2 r6( 4r 4r 3 r5')  7,2

-4 62 Jo k6 2  6 4 6 6 24na

so

p(x,O) - p(x,6) 74- 2 and Kc 7 K, 0
24nra 24z Kit

Finally, for the Rankine vortex plus image vortex velocities, it is first

assumed that within the vortex core, r is enough smaller than ly and lz that r
2

can be neglected compared with 41y2 and 41.2 in equation (10b). It is further

assumed that flattening of portions of the vortex core which come close to a

solid wall reduces the effect on core pressure of the velocities induced by

the image vortex on the other side of that wall. This occurs because

flattening of the core reduces the curvature and hence the radial pressure

gradient of that portion of the core where image vortex velocities would

otherwise increase the radial pressure gradient. As a result, sine and cosine

terms in (10b) are also neglected, and the expression which is integrated is

f0
6 dr - Id

where C. is given by equation (12). The integral can be written
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r2(1-6 2 C,)Jrdr - r (1 - 2 6 2C ° + 6 4c 2

For 6 < ly and 6 < 1z, the term 64C.2 is small compared with 62C , so the

expression for pressure is approximated by

r 2  r 2

p(x,O) p(x,5) - + 4 C

8.n a 4 n2
F 2  F2

p(x,O) =p(x,6) 8 __

1 1
K a " and K, I

8n 4!r2

Next, consider equation (9d). First, for a Rankine vortex, v - 0 and the

radial variation of w is linear, so, if u is not zero, (9d) reduces to

-- W . 0
dx

which, since

Fr Fr

2162 a
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can only be satisfied for all r inside the core and all x if

F(x) constant.

a(x)

However, equations (9a) and (9b) can only be satisfied for this case if vortex

strength and core area are both constant for all x. A more useful vortex

model can be obtained by using the Rankine vortex w profiles, but allowing v

to be determined by integrating equation (9a) with respect to r. The u

profile will still be modeled as uniform in the core but not necessarily equal

to the axial velocity outside the core. Since this profile is axisymmetric,

(9a) can be rewritten

3(ru) +a(rv)0

ax dr

so

ru f fra(17U) d r

where n is a dummy variable for r. Since u - u0 everywhere in the core,

d(ru) duo

,x dx
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SduO or d o(r

rv- = 2 dx

Then, in equation (9d) the Rankine vortex w profile still causes the viscous

term to vanish, and axisymmetry makes circumferential derivatives zero, but

the other terms remain to give

'3wjr )duo)w I lduo
U x-2 dx )r 2 dx

or

f0 raf ) r r(l a6 Fr duo 0  .
u'\2n62ax -2 6 axJ 2rr6 2 dx

This expression is integrated over the area of the core to obtain

u( ldF 1 d6) Fduo 0
U0 2dx 6dx 2dx

Ida I dF I duo

adx Fdx uodx

K, - 1 , K 2 - 1 and K 3 = 0

If the Mager profiles are used, the u distribution is a function of the
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ratio of u at the vortex center to u at the core edge. If B is used to

represent this ratio, which Mager calls the axial velocity form parameter,

then u is given by

U 6 = B+(1B) (r )(6-8()+3 r)))

and the v obtained by integrating (9a) is

=_du 6 f rB (3( _8r'+~ )4IV - -r(l -B)- +

dxk 2 2\ 6 5 6 1 2  6

- r" d B I 3 ( r 2 8( r ) 1 ( )-

rL6 dx226 56 26

+ru(l-B)- 3(, ) -) +2 -I)- i

When equation (9d) is integrated over the area of the core, the result is

ldr( B dua121B-37 1 )dB lda(1S71B-227) 81F" dx,5+ 1-, uadx ( 630 )-70O dx 2adx% 2520 3Re au,

which, for B-1 all along the vortex, reduces to

I da 7 dF 1 duo Ion

adx 4Fdx Uo dx ReC 2 auo

7
K, _ , K 2 = 1 andK 3 = 1On

4
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